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Introduction
It is known that the rotational accuracy of hydtostatic spindles is much higher than the geometric
accuracy of the individual bearing components themselves. This is known as “averaging” effect of
the fluid film or “etror averaging.” This paper contains a theotetical explanation of this effect and
offers tools for predicting the rotational accuracy of hydrostatic spindles based on the design
configuration and the geometric etrots of individual components.

In the analysis, a formula for predicting average radial error motion as a function of the spindle and
bore errors is shown. For the case of a bearing with i hydrostatic pockets in the stator, it is shown
that the error motion is independent of the stator geometry, and only the 7 = 7 Fourier coefficients
have an effect on rotational accuracy. Furthermore, it is shown that the averaging efficiency grows
with rotational speed, and with the number of individual pockets.

Amnalysis

The goal of this apalysis is to develop a fonction that predicts the pure radial error motions of a
rotating shaft in a hydrostatic beating as a function of manufacturing inaccuracies. The specific case
to be considered is that of a multi-recess hydrostatic journal bearing with constant laminar restrictors
as shown in Figute 1. In the figure , O is origin of coordinate system X,Y which is connected to
the stationary bore, and O’ is the otigin of the X', Y coordinate system which is connected to the
totating shaft. For the analysis, it is assumed that the roundness of the bore and shaft are constant
along their length. Therefore, it is assumed that the polar equations for both cutves have small
deviations from ideal ctrcles such as shown in Equations 1 and 2.

"The polar equation of the bore in coordinate system X,y is:

Alp)=s,+alp)  A,>>a(p) o
and the polar equation of the shaft in coordinate system X', Y" is:
B(®)=B, +b{) B, >> b(®) @

The displacements of the center of the shaft in the X,Y coordinate system ate shown in Figure 1 as
e, and e . Because the shaft rotates with speed ®, > the instantaneous angular position § can be

expressed as Equation 3 and the gap between the bore and the shaft can be written as Equation 4.
8(t)= 0, - w,t )

h{,8)=h, +2(p)~b(@)- e, Cosp - ¢, Siny @
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Figure 1: Shaft and bote with coordinate systems and gap showa.

In order to determine the displacements ¢, and €, as a function of the shaft’s angular position and

the bearing’s

geometrical errots, consider the flow balance equation of the incompressible fluid in the

# pocket. The vadous flow components Qjare illustrated in Fignre 2.
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Figute 2: Components of the flow through the pocket.

flow into the pocket through the inlet restrictor from the hydranlic power unit.

axial flow out of the pocket to the return line at atmosphere pressure.

flow into pocket because of the shafi’s translational movement.

flow into the pocket to 7-7 pocket caused by a ptessure difference and by the shaft’s
rotation. '

: flow out of the pocket to #+7 pocket caused by a pressute difference and by the shaft’s

rotation.
: flow out of the pocket caused by pocket volume change due to the rotation. of the
nop-~round shaft.

Therefore the flow balance equation of the incompressible fluid in the # pocket is written in

Equation 5.

2Qy =Qu = Qi + Qs + Qi — Qs + Q4 =0 ©)
i
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Each flow component can be determined through the pressures in the pockets p;, the gap

distribution h(tp,ﬂ), and the shaft’s rotational speed @,. The flow balance equation for # pockets
becomes a system of # linear equations with # unknown pressures. In order to determine the error
motions of the spindle, the force components on the shaft must be derived. These components of
force in the X and Y directions can be easily expressed through the pressures in the pockets as
Equations 6 and 7.

F,=-L,DSin"3p, Cos—(21 1) ©)
1l i=1

F, =-L DSin=3p, Sm—(21 1) Q)
=l

However, since the pressures aré not known this system has no solution. Rather than solve the
system of # equations for # unknown pressures, this system is transformed to two linear equations

for F, and F, by manipulating Equation 5 to Equations 8 and 9.

E, =mg; =—cge, —cye, —ké, + [Cos-— (21 1)— (b+ a)] [Cos— (21 - 1) _{ [b(cr.) a.((x)]:[ot
nSin— " = nSin" - = (1-1)
®)
F, =mg, =—cqe, +cie, —ke, + =t p- [ in— (21 1)— (b +a)] [Sm-— (21 —I)Lf[b(a) a(a)]ia &)
nSin— ! Tim 25-1)

n

Where ¢, is the static stiffness of 2 beating without geometric errors, c, is the stiffness component

due to the hydrodynamic effect of the shaft rotation, and k is the damping ratio of a bearing without
geometric errors. Previous researchers have found for these coefficients Equations 10 through 12.

. _03750p,L.D 1 10
° hD 7 + LcL'l
aSin? T LD
n
1.5unl 21D 1
k= o1 (11)
hg T + LcL'i
nSin? T LD
n
1
c, = Ekﬁ)o (12)

The solutions of Equations 8 and 9 give a parametric equation for a trace of the shaft’s rotational
axis. Since the bote’s geometric errors do not depend on time ¢ and e, have no influence on

trace’s shape and only define the trace’s center or axis shift. Therefore, these components are
neglected in future derivations. Assuming that the geometric etrors of the shaft are sinusoidal as in
Equation 13, Equations 8 and 9 can be simplified to Equations 14 and 15. From these it is apparent
that the essential harmonics are only those that are sn=7.

b(8,t)=b,Cos® - (13)

me, +ké, +cpe, + ce, =+ b°c°1 Cos(uu + 1}not + bocisin(un = 1):th (14)
un =

me, +keé, +coe, ~cpe, = i__b_"f_o_fSin o * 1}not =b,c;Coslun = 1)coot (15)
un *
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For the harmonic number ##+7 the center of the shaft will trace a circle with frequency (un+7) @, in
the direction of the shaft’s rotation. However, for the hatmonic number #2-7 the shaft will trace a
circle with frequency (#»-7) @, in the direction opposite to the shaft’s rotation. Finally, the averaging

efficiency of the bearing, or the ratio between the pure radial error motions and the geometric
inaccuracies of the shaft, is shown in Equation 16.

W=

2
o

o (unil)

b |E. —metne1) ] + e =1)7e ] 19

2
+cy

Conclusions and Future Work
Prediction of the rotational accutacy of hydrostatic spindles can be accomplished with the theory
detived without knowledge of the pocket pressutes. It is shown that the rotational accuracy of

hydrostatic spindles is based on the design configuration and the geometric errots of individual
components.

For the specific case of a bearing with 7 hydrostatic pockets in the stator bore, it is shown that the
ettor motion is independent of the stator inaccuracies. In fact, only the i + 1 Fourier coefficients of
the shaft geometry influence the rotational accuracy. Furthermore, it is shown that the averaging
efficiency grows with rotational speed, and with the number of individual pockets. Experimental
testing of spindle errors is currently underway in an attempt to empirically verify the model.
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